Search results for "Fermionic operator"

showing 8 items of 8 documents

A PHENOMENOLOGICAL OPERATOR DESCRIPTION OF INTERACTIONS BETWEEN POPULATIONS WITH APPLICATIONS TO MIGRATION

2013

We adopt an operatorial method based on the so-called creation, annihilation and number operators in the description of different systems in which two populations interact and move in a two-dimensional region. In particular, we discuss diffusion processes modeled by a quadratic hamiltonian. This general procedure will be adopted, in particular, in the description of migration phenomena. With respect to our previous analogous results, we use here fermionic operators since they automatically implement an upper bound for the population densities.

Heisenberg-like dynamicsComputer scienceApplied MathematicsPopulations and Evolution (q-bio.PE)FOS: Physical sciencesDynamics of competing populations with diffusion; Fermionic operators; Heisenberg-like dynamicsUpper and lower boundssymbols.namesakeQuadratic equationOperator (computer programming)Biological Physics (physics.bio-ph)Particle number operatorFOS: Biological sciencesModeling and SimulationsymbolsPhysics - Biological PhysicsStatistical physicsQuantitative Biology - Populations and EvolutionHamiltonian (quantum mechanics)Settore MAT/07 - Fisica MatematicaDynamics of competing populations with diffusionquantum tools for classical systemsFermionic operatorsMathematical Models and Methods in Applied Sciences
researchProduct

An operatorial description of desertification

2016

We propose a simple theoretical model for desertification processes based on three actors (soil, seeds, and plants) on a two-dimensional lattice. Each actor is described by a time dependent fermionic operator, and the dynamics is ruled by a self-adjoint Hamilton-like operator. We show that even taking into account only a few parameters, accounting for external actions on the ecosystem or the response to positive feedbacks, the model provides a plausible description of the desertification process, and can be adapted to different ecological landscapes. We first describe the simplified model in one cell. Then, we define the full model on a two-dimensional region, taking into account additional…

Mathematical optimizationDesertification Fermionic operators Heisenberg-like dynamicsHeisenberg-like dynamicsComputer sciencemedia_common.quotation_subjectApplied MathematicsFermionic operatorHeisenberg-like dynamic01 natural sciences010305 fluids & plasmas010101 applied mathematicsDesertification0103 physical sciencesFull modelReversing0101 mathematicsSettore MAT/07 - Fisica MatematicaDesertificationFermionic operatorsmedia_common
researchProduct

Dynamics of Confined Crowd Modelled Using Fermionic Operators

2014

An operatorial method based on fermionic operators is used to describe the dynamics of a crowd made of different kind of populations mutually interacting and moving in a two–dimensional bounded closed region. The densities of the populations are recovered through the Heisenberg equation and the diffusion process is driven by the Hamiltonian operator defined by requiring that the populations move along optimal paths. We apply the model obtained in a concrete situation and we discuss the effect of the interaction between the populations during their motion.

PhysicsClassical mechanicsPhysics and Astronomy (miscellaneous)Diffusion processGeneral MathematicsQuantum dynamicsBounded functionQuantum mechanicsDynamics (mechanics)Motion (geometry)Settore MAT/07 - Fisica MatematicaHeisenberg pictureFermionic operatorsQuantum dynamics Heisenberg-like dynamics Dynamics of competing populations
researchProduct

The stochastic limit in the analysis of the open BCS model

2004

In this paper we show how the perturbative procedure known as {\em stochastic limit} may be useful in the analysis of the Open BCS model discussed by Buffet and Martin as a spin system interacting with a fermionic reservoir. In particular we show how the same values of the critical temperature and of the order parameters can be found with a significantly simpler approach.

Spin systemFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsBCS modelMathematical Physics (math-ph)FermionCritical valuefermionic operatorsLimit (mathematics)Statistical physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics
researchProduct

A Phenomenological Operator Description of Dynamics of Crowds: Escape Strategies

2015

Abstract We adopt an operatorial method, based on creation, annihilation and number operators, to describe one or two populations mutually interacting and moving in a two-dimensional region. In particular, we discuss how the two populations, contained in a certain two-dimensional region with a non-trivial topology, react when some alarm occurs. We consider the cases of both low and high densities of the populations, and discuss what is changing as the strength of the interaction increases. We also analyze what happens when the region has either a single exit or two ways out.

Physics - Physics and Societybusiness.industryApplied MathematicsFOS: Physical sciencesFermionic operatorHeisenberg-like dynamicPhysics and Society (physics.soc-ph)Escape strategieApplied MathematicDynamics of crowdOperator (computer programming)CrowdsParticle number operatorDynamics (music)Modeling and SimulationArtificial intelligenceStatistical physicsbusinessFermionic operators Heisenberg-like dynamics Dynamics of crowds Escape strategiesSettore MAT/07 - Fisica MatematicaTopology (chemistry)Mathematics
researchProduct

(H, ρ)-induced dynamics and the quantum game of life

2017

Abstract We propose an extended version of quantum dynamics for a certain system S , whose evolution is ruled by a Hamiltonian H, its initial conditions, and a suitable set ρ of rules, acting repeatedly on S . The resulting dynamics is not necessarily periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of H, ρ as well as on the initial conditions. After a general discussion on this (H, ρ)-induced dynamics, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension.

Cellular automataPure mathematicsQuantum dynamicsFermionic operator01 natural sciences010305 fluids & plasmasModeling and simulationSpectral analysisymbols.namesakeQuantum games0103 physical sciencesSpectral analysis010306 general physicsSettore MAT/07 - Fisica MatematicaFinite setGame of lifeMathematicsMathematical physicsGame of lifeApplied MathematicsCellular automata Fermionic operators Game of life Heisenberg-like dynamics Spectral analysis Modeling and Simulation Applied MathematicsHeisenberg-like dynamicCellular automatonModeling and SimulationsymbolsHamiltonian (quantum mechanics)Applied Mathematical Modelling
researchProduct

From classical to operatorial models

2023

Mathematical models for the collective dynamics of interacting and spatially distributed populations find applications in several contexts (biology, ecology, social sciences). Their formulation depends primarily on the (continuous or discrete) description of the space. Reaction-diffusion equations have been widely used in bioecology (morphogenesis, migration of biological species, tumor growth, neuro-degenerative diseases) and in the social sciences (diffusion of opinions or decisionmaking processes), and exhibit complex behaviors (propagation of oscillatory phenomena, pattern formation caused by instability). A reaction–diffusion system exhibits diffusion-driven instability, sometimes call…

CooperationTuring instabilityFermionic operatorReaction-diffusion systemPDESettore MAT/07 - Fisica MatematicaQuantumMigrationHamiltonian
researchProduct

Dynamics of closed ecosystems described by operators

2014

Abstract We adopt the so-called occupation number representation , originally used in quantum mechanics and recently adopted in the description of several classical systems, in the analysis of the dynamics of some models of closed ecosystems. In particular, we discuss two linear models, for which the solution can be found analytically, and a nonlinear system, for which we produce numerical results. We also discuss how a dissipative effect could be effectively implemented in the model.

Pure mathematicsHeisenberg-like dynamicsEcological ModelingClosed ecological systemDynamics (mechanics)Linear modelFOS: Physical sciencesFermionic operatorClosed ecosystemNonlinear systemNumber representationBiological Physics (physics.bio-ph)Dissipative systemStatistical physicsPhysics - Biological PhysicsClosed ecosystems; Fermionic operators; Heisenberg-like dynamicsSettore MAT/07 - Fisica MatematicaMathematics
researchProduct