Search results for "Fermionic operator"
showing 8 items of 8 documents
A PHENOMENOLOGICAL OPERATOR DESCRIPTION OF INTERACTIONS BETWEEN POPULATIONS WITH APPLICATIONS TO MIGRATION
2013
We adopt an operatorial method based on the so-called creation, annihilation and number operators in the description of different systems in which two populations interact and move in a two-dimensional region. In particular, we discuss diffusion processes modeled by a quadratic hamiltonian. This general procedure will be adopted, in particular, in the description of migration phenomena. With respect to our previous analogous results, we use here fermionic operators since they automatically implement an upper bound for the population densities.
An operatorial description of desertification
2016
We propose a simple theoretical model for desertification processes based on three actors (soil, seeds, and plants) on a two-dimensional lattice. Each actor is described by a time dependent fermionic operator, and the dynamics is ruled by a self-adjoint Hamilton-like operator. We show that even taking into account only a few parameters, accounting for external actions on the ecosystem or the response to positive feedbacks, the model provides a plausible description of the desertification process, and can be adapted to different ecological landscapes. We first describe the simplified model in one cell. Then, we define the full model on a two-dimensional region, taking into account additional…
Dynamics of Confined Crowd Modelled Using Fermionic Operators
2014
An operatorial method based on fermionic operators is used to describe the dynamics of a crowd made of different kind of populations mutually interacting and moving in a two–dimensional bounded closed region. The densities of the populations are recovered through the Heisenberg equation and the diffusion process is driven by the Hamiltonian operator defined by requiring that the populations move along optimal paths. We apply the model obtained in a concrete situation and we discuss the effect of the interaction between the populations during their motion.
The stochastic limit in the analysis of the open BCS model
2004
In this paper we show how the perturbative procedure known as {\em stochastic limit} may be useful in the analysis of the Open BCS model discussed by Buffet and Martin as a spin system interacting with a fermionic reservoir. In particular we show how the same values of the critical temperature and of the order parameters can be found with a significantly simpler approach.
A Phenomenological Operator Description of Dynamics of Crowds: Escape Strategies
2015
Abstract We adopt an operatorial method, based on creation, annihilation and number operators, to describe one or two populations mutually interacting and moving in a two-dimensional region. In particular, we discuss how the two populations, contained in a certain two-dimensional region with a non-trivial topology, react when some alarm occurs. We consider the cases of both low and high densities of the populations, and discuss what is changing as the strength of the interaction increases. We also analyze what happens when the region has either a single exit or two ways out.
(H, ρ)-induced dynamics and the quantum game of life
2017
Abstract We propose an extended version of quantum dynamics for a certain system S , whose evolution is ruled by a Hamiltonian H, its initial conditions, and a suitable set ρ of rules, acting repeatedly on S . The resulting dynamics is not necessarily periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of H, ρ as well as on the initial conditions. After a general discussion on this (H, ρ)-induced dynamics, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension.
From classical to operatorial models
2023
Mathematical models for the collective dynamics of interacting and spatially distributed populations find applications in several contexts (biology, ecology, social sciences). Their formulation depends primarily on the (continuous or discrete) description of the space. Reaction-diffusion equations have been widely used in bioecology (morphogenesis, migration of biological species, tumor growth, neuro-degenerative diseases) and in the social sciences (diffusion of opinions or decisionmaking processes), and exhibit complex behaviors (propagation of oscillatory phenomena, pattern formation caused by instability). A reaction–diffusion system exhibits diffusion-driven instability, sometimes call…
Dynamics of closed ecosystems described by operators
2014
Abstract We adopt the so-called occupation number representation , originally used in quantum mechanics and recently adopted in the description of several classical systems, in the analysis of the dynamics of some models of closed ecosystems. In particular, we discuss two linear models, for which the solution can be found analytically, and a nonlinear system, for which we produce numerical results. We also discuss how a dissipative effect could be effectively implemented in the model.